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$ Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia 
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Abstract. The curvature collineation equations have been solved for the two families of 
Petrov type-N plane-fronted gravitational wave solutions of Einstein’s vacuum field 
equations in general relativity. Both of these solutions always have non-trivial curvature 
collineations, i.e. vector fields 6 with respect to which the components Ruvap of the 
Riemann tensor for those solutions are Lie derivable. 

1. Introduction 

Katzin et a1 (1969) defined a curvature collineation (cc) of a metric g to be a vector field 
f such that 

9ER = 0 (1.1) 

where RWuap are the components of the Riemann tensor of that metric g, i.e. the 
Riemann tensor is Lie derivable along the congruence of curves with tangent vector f .  
All special conformal motions (SCM) with f such that 

d%ig,” = 4gw 4 , u  = 0 (1.2) 
have been shown by Katzin, Levine and Davis to be cc’s. However the converse is not 
true in general; there are some metrics with cc’s which are not SCM’S. A cc is said here 
to be non-trivial if it does not reduce to a SCM. 

Collinson (1970) has shown that in vacuum, the only solutions of Einstein’s field 
equations that have non-trivial cc’s have Weyl tensor of Petrov type N. Katzin, Levine 
and Davis showed that Einstein space-times (with R,, = iRg,, # 0) do not admit 
non-trivial cc’s. Also Tariq and Tupper (1977) showed that cc’s admitted by the 
source-free Einstein-Maxwell space-times are SCM’S, except possibly in the case where 
the Maxwell field is null and the Weyl tensor is type N or 0. Reasons are given 
elsewhere by McIntosh (1979), and in future papers by McIntosh and Halford, why 
extremely few space-times, even for other forms of the matter tensor in Einstein’s 
equations, admit non-trivial cc’s, and the possible cases will be listed in these papers. In 
this paper two vacuum space-times are discussed which admit non-trivial cc’s. 

A necessary condition for f to be a cc is (Katzin, Levine and Davis’ equation (2.11)) 
that it satisfies the equations 

x,& Y ~ a p  + XAJ ”Wap = 0 (1.3) 
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where 

x,v = 5 ( u ; v , .  (1.4) 
Equation (1.3) can easily be obtained by Lie differentiating the identity 

gpR " ~ ~ 6  + g d  " W a p  = 0 (1.5) 

with respect to 8 and using (1.1). Collinson (1970) has shown that in vacuum the only 
possible solutions of (1.3) for x,, are 

(1.6) 

where a = 0 except for Petrov type-N solutions, in which case a may be non-zero, and 1 
is the four-fold repeated principal null congruence of the Weyl tensor. Since in this case 
1 satisfies 

x,, = &,U + a1,L 

l,Ccluap = 1,R lLvorp = 0 ,  (1.7) 

(1.6) obviously satisfies (1-3). Collinson gave one particular pp-wave vacuum solution 
for which a # 0 and 8 was a non-trivial cc. Aichelburg (1972) gave a list, which 
unfortunately is not complete, of cc's given by the plane-fronted gravitational wave 
vacuum metric with line element 

ds2=[F(u , f )+F(U,  f ) ]du2+2du  d v - 2 d f d f  (1.8) 

where F is an arbitrary function of U and f .  Where (xo, xl, x 2 ,  x 3 )  = (U, U, f ,  f ) ,  the only 
non-zero independent components of the Riemann tensor for the metric as given by 
(1.8) are 

(1.9) 

and their complex conjugates R I 3 0 3  and R2003. 

Kundt (1961) gave two separate families of plane-fronted gravitational wave 
solutions of the vacuum Einstein field equations. One family is described by (1.8) and 
represents waves with parallel rays: the so-called pp metrics. In the other family the 
rays are not parallel and have non-zero rotation IRI, Both have non-expanding 
principal null congruences. In Newman-Penrose (1962) language, p = 0 for both cases 
and T = 0 for (1.8) but T ( =  R) # 0 in the second case. The line element in this last case 
can be written as 

1 R ' 2 0 2  = R 3~~~ = 

ds2=  - { I J ~ x - ~ + ( ~ + ~ ) [ F ( u ,  ~ ) + F ( u ,  f ) ] } d ~ ' + 2  du[dU-ux-' (df+df) ] - -dfdf  
(1.10) 

where 

2 x = f + f  (1.11) 

and F ' i s  an arbitrary complex function of U and f .  The only non-zero independent 
components of the Riemann tensor for (1.10) are 

R l o o z  = 2vF,ll, R ' 2 0 2  = xF,cc, R 3 ~ ~ 2  = 2xF,cc (1.12) 

and their complex conjugates RlO03, R I 3 0 3  and RZoO3. 

interpretation is given for those of the T # 0 metric (1.10). 
Curvature collineations for both these metrics are listed in this paper and an 



Curvature collineations in general relativity 2997 

2, The T # 0 metric (1.10,ll) 

The necessary conditions (1.6) that the metric given by ( 1 . 1 0 , l l )  admit a curvature 
collineation (1.1) are that 

2?&v = dg,v + C Y 8 O , S O V  (2.1) 
where a”, = 1, are the components of the repeated principal null congruence of the 
metric in those coordinates. It is easiest first to solve (2.1) for the necessary conditions 
on f and then to solve the rest of the full set of equations (1 .1) .  Equations (2.1) give 

6 = ~ ( u ) a ,  + {[2a - ~ ‘ ( u ) ] v  + E ( u ) ( [  + f ) ’>aU + (a5 + ib)a, + (a f -  ib)a,- 

a(u ,  v ,  5, c?) = 2 E ’ ( u ) ( 5 + ~ ) * + ( 5 + c ? ) G ( u ,  5, f)-244E(u)+”)l 

4 = 2 a  (2.2) 

where 

G(u, 5, f )  = [ a  -2B’(u)] (F+I’ )  - (a l+ib)F, ,  - ( a f - i b ) ~ , ~ - B ( u ) ( F , ,  +I’,,). (2.3) 

Here a and b are arbitrary real constants, B and E are arbitrary real functions of U and 
F stands for F ( u ,  5 ) .  

However, f as given in (2.2) does not define a cc, as only the necessary conditions 
(2.1) have been satisfied. When this f is substituted into (1.1) it is found that F has to 
satisfy 

(a5 +ib)F,,, + [ a  + 2B’(u)IF,,  +B(u)F,,,  = 0.  

This can be integrated to yield 

[a - 2 B f  (u  ) ] F  - ( a t  f ib)F,, - B (u)F, ,  = y ( u ) [  + U )  + iJ( U )  (2.4) 
where y is an arbitrary complex function of U and H and J are arbitrary real functions of 
U .  Then G ( u ,  5, f )  can be replaced by 

(2.5) G(u, 5, L? = r ( u ) t +  T ( u ) f + H ( u )  

so that cy in (2.1) and (2.2) is given by 

U, 5, c?) = (5 + f M U ) l +  7 ( 4 f + H ( u ) l +  2E’(u)(5+ o2 - 2 u [ 4 E ( u )  +”)I. 
(2.6) 

cc’s are now given by (2.2) and (2.5). In the general case when F is arbitrary, (2.4) gives 
a = b = 0, B = H = J = y = 0; however there is always the cc given by 

5‘ = E(u) (5  + f I2L  CY = -8vE(u)  + 2 E ’ ( ~ ) ( 5  + f )* .  (2.7) 
Equation (2.4) can be solved to find explicit forms of F(u ,  5 ) .  However, a number of 
canonical cases arise and it is not worthwhile to list them. Also in practice the procedure 
works the other way round: if an explicit form of F(u,  5 )  is given, equation (2.4) soon 
yields a,  b, B, H, J and y and the precise form of the cc is known. 

Special conformal motions of the metric thus have 

CY =o,  E=O, y = 0 ,  H = 0,  B”(u) = 0 ,  (2.8) 

and F satisfies the differential equation 

G ( u ,  5, f )  = 0.  (2.9) 
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Since q5 is a constant, these motions are either non-trivial homothetic ones (a  # 0) or 
Killing ones (a  = 0). 

3. Description of curvature collineations for the r # 0 metric 

The non-trivial cc’s of the 7 # 0 metric are described by 6 as given by (2.2). The Lie 
derivative of g,, with respect to 8 is, from (2.1), (2.2) and (2.5), 

Z & O O  = 2agoo+ (5+  f ) [r (u) t  + ? ( u ) f + H ( u ) l + 2 ~ ’ ( u ) ( 5  + a2 - 2v[4E(u) +”)I 
(3.1) 

zeg,i = 2agFi for i = 1,2 ,3 ,  (3.2) 

and 

where F satisfies the differential equation (2.4). The ‘a’  term just describes a constant 
scaling of the metric coefficients; with all the constants and arbitrary functions in 6 zero 
except for a, 6 is just a homothetic vector field. There is thus no real loss of 
interpretation of the cc’s in just considering the case with a = 0. 

The infinitesimal effect on goo under the Lie derivative 8 is given by (3.1). The 
corresponding finite transformations affect goo in a similar way, namely 

goo + goo + v P ( u )  + (5  + m u ,  5 )  (3.3) 

L(u, t)= 2Q(u)+5S(u)+fg(u). (3.4) 

where 

Here P and Q are real functions of u and S is a complex function of U. The relationships 
between these functions and those in 6 can readily be obtained. Now the form of the 
original metric (1.10) has 

goo = -U x (3.5) 2 -2- 

If, instead, goo was given by 
(5 + m Y u ,  5 )  +m4 a l .  

goo= - v 2 X x 2 + 8 ~ M ( u ) - ( 5 + f ) [ F 1 ( ~ ,  5 ) + P l ( U ,  f)I, (3.6) 

where M is an arbitrary function of U, then M can be eliminated from goo in (3.6) by a 
coordinate transformation of the form 

6 = v + M ( u ) ( 5 + f ) 2 ,  U’ = U, z= 5, (3.7) 

K ( u ,  5 )  = F(u,  5 )  + 25[M‘(u) +2M2Wl .  

and where 

(3.8) 

If the more general form (3.6) is taken rather than (3.5), then M, and its derivatives do 
not appear in the components of the Riemann tensor. As the non-zero RFVup are all 
proportional to F,CC or its complex conjugates, these component‘s are also unaffected by 
a change in F(u,  5 )  of the form (3.8) (since F,bb = F1,C1).  

Thus any (non-trivial) cc consists of a scaling or homothetic motion plus a mapping 
which changes goo as in (3.3)’ (3.4). It is obvious from the above discussion that the 
components RFVup of the Riemann tensor are unaffected by these changes. It is 
interesting that there are no other cc’s than the ones giving these obvious changes. 
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4. The T = 0 metric (1.8) 

For the pp-wave metric the equations (2.1), the necessary conditions for a cc which 
satisfy (1.3), can be solved but the solutions are rather messy. It isbest not to write them 
down explicitly but to solve them and the other equations for a cc (1.1) together, i.e. in 
essence to solve all of the equations (1.1) together. This yields 

2[P’(u) -N(u)]F +P(u)F, ,  + { [ N ( u )  +ib]f + P ( u ) } F , ~  = y(u)<+$K(u)  +iJ(u) .  (4.2) 

Here b is an arbitrary real constant, K, J, M, N and P are arbitrary real functions of U 
and p and y are arbitrary complex functions of U. 

6 in (4.1) becomes a SCM when 

a = O  (4.3) 

in which case (4.1) reduces to 

6 = (cu2+ eu + a )  a, +[v(2d -e) + c l f + p ’ ( u ) l  + p ’ ( u ) f + ~ ( u ) ]  a, 
+ [(cu + d + i b ) l  + @ ( U ) ]  a, + [(cu + d - ib)f+ P(u)]  a p  

q5=2(cu+d) (4.4) 
and F satisfies 

2(cu +e-a)F+(cu2+eu +a)F, ,+[(cu+d+ib)l+p(u)]F, ,= - 2 @ ’ [ - M ’ ( u ) + i J ( u ) .  

Here a, b, c, d and e are arbitrary real constants. 
Again these differential equations for F can be solved and a list of canonical classes 

for F given. A list where 6 is an isometry and q5 = 0 in (4.4) is given by Ehlers and Kundt 
(1962; table 2-5.1). Collinson (1970) gave one case where F is such that the metric 
admits a non-trivial cc. Katzin et a1 (1970) showed that the general pp metric always 
admits a non-trivial cc of the form (4.6) below. Aichelburg (1972) also establishes this 
fact and gives some forms of F for which the metric admits more general non-trivial 
cc’s. Unfortunately his list is incomplete; for example, one case he does not mention is 
F(u,  5 )  = exp[A (u)l], where A is an arbitrary function of U. Obviously a non-trivial 6 
can be found from (4.1) and (4.2) for this F. 

As in the case of the T # 0 metric, in practice the substitution of a given particular 
form of F into (4.2) or (4.5) yields the possible non-zero constants and functions of U 
that enable 6 to be written down explicitly. 

As mentioned above, the general metric always admits a non-trivial cc since, with F 
arbitrary, all the unknowns in the expression for 6 in (4.1) are zero except for M ( u ) .  In 
this case 

6 = M(u)au, a = 2M‘(u). (4.6) 

(4.5) 
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This is equivalent to U + o + M ( u ) ,  U 3 U ,  l+ 5. It is obvious that the complex 
components (1.9) of the Riemann tensor (and their complex conjugates) are unaltered 
under this mapping. When Katzin et a1 (1970) showed that the metric admitted a cc of 
this type, they also showed that, for special forms of the function M, the cc’s are trivial 
ones. However, M can be arbitrary and the cc is then non-trivial. 

5. Conclusion 

The curvature collineation equations (1.1) have been solved for both the type-N 
plane-fronted gravitational wave metric (1.8) and (1.10, 11). In both cases the metrics 
always admit c c ’ s  which are not SCM’S (and incidentally are not also affine collineations) 
and quite often other non-trivial c c ’ s  as well. The SCM’S admitted by both of these 
metrics are also given as obvious subcases of the cc’s. 

The equations (1.3), which here arise as necessary conditions for the vector 5 
satisfying (1.4) to be a cc, will be discussed later by McIntosh and Halford. This is in 
relationship to the holonomy group and the problem of finding xwv for a given set of 
RwVap which are the components of the Riemann tensor for some metric, and extends 
the work of Hlavatjl (1959a,b) and Ihrig (1975)-see also McIntosh (1979). Some of 
the results in this paper will be used as illustrations of results in these further papers. 
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